CHAPTER 27: Fatty Acid Degradation

(Problems: 1,6,8,9,11,12,14,17-21,23,31)

27.1: Fatty Acids are Processed in Three Stages

- 1. Mobilization of lipids. Degradation of TAGs to FAs and glycerol.
- 2. Activation of Fas.
- 3. Oxidation of FAs to acetyl-CoA, and processing by CAC.

Lipase Hydrolysis of TAGs

<u>Perilipin</u>: mobilization of TAGs, and release of ATGL co-activator (CA).

<u>ATGL</u>: Adipose triglyceride lipase. Hydrolysis of one FA from TAG to produce DAG + FA.

<u>HS-lipase</u>: Hormone sensitive lipase. Hydrolysis of FA from DAG to produce MAG + FA.

MAG lipase: Hydrolysis of remaining FA from MAG to produce glycerol and FA.

Distribution of FAs and Glycerol

Activation of FAs

Equivalent to the hydrolysis of 2 ATP.

Transport to Mitochondria

Fatty Acid Oxidation

Table 27.1 Principal reactions required for fatty acid degradation

		Step	Reaction	Enzyme
β-Oxidation Cycle	Activiation	1	Fatty acid + CoA + ATP ← acyl CoA + AMP + PP _i	Acyl CoA synthetase (also called fatty acid thiokinase and fatty acid: CoA ligase)*
	Transport	2	Carnitine + acyl CoA ← acyl carnitine + CoA	Carnitine acyltransferase I and II (also called carnitine palmitoyl transferase I and II)
	Oxidation 1	3	Acyl CoA + E-FAD \Longrightarrow $trans$ - Δ^2 -enoyl CoA + E-FADH ₂	Acyl CoA dehydrogenases (several isozymes having different chain-length specificity)
	Hydration	4	trans- Δ^2 -Enoyl CoA + H ₂ O \Longrightarrow L-3-hydroxyacyl CoA	Enoyl CoA hydratase (also called crotonase or 3-hydroxyacyl CoA hydrolyase)
	Oxidation 2	5	L-3-hydroxyacyl CoA + NAD ⁺ ← → 3-ketoacyl CoA + NADH + H ⁺	L-3-Hydroxyacyl CoA dehydrogenase
	Thiolysis	6	3-Ketoacyl CoA + CoA ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	β-Ketothiolase (also called thiolase))
Ļ	*An AMP-forming ligase.			

^{*}An AMP-forming ligase.

Table 27.1

Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company

Net yield of ATP per palmitate oxidized to 16 CO2

	ATP generated
8 acetyl CoA	80
7 QH ₂	10.5
7 NADH	17.5
	108 ATP
ATP expended to activat	e palmitate <u>-2</u>
Net yield:	106 ATP

Glc (6 C) = 32 ATP which is 5.33 ATP/C

PA (16 C) = 106 ATP which is 6.88 ATP/C

27.2: Degradation of Unsaturated and Odd-Chain Fatty Acids

Unsaturated Fatty Acids

Skips one $FAD \rightarrow FADH_2$ step

Figure 27.8

Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company

Summary: -1 FADH₂, -1 NADH

Odd-Chain Fatty Acids

How many ATPs would result from oxidiation of heptadecanoic acid?

27.3: Ketone Bodies

Figure 27.10

Biochemistry: A Short Course, Second Edition
© 2013 W. H. Freeman and Company

Acetoacetate
3-Hydroxybutyrate
Acetone

Water soluble Easily transportable Synthesis in liver

27.4: Physiological Conditions and Fatty Acid Metabolism

Diabetes

Starvation

